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Potential theory problem for two strips in contact 
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(Received July 17, 1973) 

SUMMARY 
The problem of two geometrically identical strips in contact to form the potential theory equivalent to a lap joint is 
formulated and reduced, by integral transform methods, to the solution of a singular integral equation. A collocation 
scheme is used to obtain numerical results for various overlaps and amounts of coupling between the strips. 

1. Introduction 

An impor tan t  problem in elastostatics is that  of  two strips that  are bonded  together  in what  is 
usually called a lap joint.  The geometrical  configurat ion for such a bonded  structure is shown 
in Fig. 1, where the upper  strip occupies the region, - r c  < y < 0, - a  < x < o% and the lower 
strip the region, 0 <  y <  re, - oo < x <  a. The two strips will usually be bonded  in the region, 
y = 0, - a < x < a, and if any peeling should occur,  there may  be debonding  reducing the contact  
region to - c  < x < c. It is no t  the intention to solve the elasticity problem here but rather to 
restrict the at tent ion to the related potential  theory problem.  
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Figure 1. Geometry and coordinate system. 
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The potent ial  theory problem requires the determinat ion of two functions, ~b 1 and ~2, where 
subscript "1" refers to the upper  strip and "2" to the lower one. The two functions satisfy the 
two dimensional  Laplace equat ion and appropr ia te  b o u n d a r y  and matching  conditions. The 
b o u n d a r y  condit ions are the following 

0 r  y = - l r ,  - a < x <  
@y 

~3~1 - 0 x = - a ,  - T z < y < O  
c~x 

t3~bl - 0 y = O, - a <  x <  - c ,  
Oy 

0) 

(2) 

C< X < ~ (3) 
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- 0  y = rc , - o o  < x <  a (4) ~y 

0q~: 
- 0  x =  a , O <  y <  n (5) 

Ox 

~4)2 
~y - 0 y = 0 ,  - o o < x < - c ,  c < x < a .  (6) 

In addition, the following matching conditions must be applied: 

~4~1 _ 04~2 
(?y ~3y y = 0 ,  - c <  x_< c (7) 

~q~l 0(~2 
~x -- f3~-x  y = 0 ,  - c < _ x _ < c .  (8) 

The physical problems posed are the following. If one assumes that ~b3[ and q52 are equal to 
kl T1 and k2 T2, where ki and T/(x, c) (i = 1, 2) are the thermal conductivities and temperatures 
in the upper and Dower strips, then the boundary conditions represent the steady state heat flow 
problem of two strips in contact having different thermal conductivities. Here 13= k3[/ka and 
the strips are thermally insulated except in the region, y = 0, - c < x < c. The continuity of heat 
flux from one strip to the other may be written as 

c~1 0~2 - - a(x)H(c- lx l )  y = 0  (9) Oy Oy 

where H (x) is the Heaviside function. The total rate of heat flow across y = 0 is then 

(~ a(x)dx = 1 .  (10) 
0-- C 

In addition, the following conditions must hold as x--+ _+ oo : 

f ~ e lim ~ dy = m ~ dy = - 1 (11) 
X--+ oO - - ~  X - - o 0  0 

which reflect the fact that there must be the same total heat flow leaving the bot tom strip as 
entering the top one. 

The problem could also be viewed as an elasticity problem where two semi-infinite layers 
are bonded together and put into a state of anti-plane shear. For that problem q~ (x, y) = w~ (x, y), 
the displacements in the z-direction. The stresses are z~  = ~43,/~x, z(~ = 04)jc3y (i = 1, 2) and 
13 =/~z/#t is the ratio of shear moduli. Equation (7) is the continuity of shear stresses through 
the contact region and Eqn. (8) is the condition of displacement continuity differentiated in the 
tangential direction. Equation (10) now gives the total load as an integration of the contact 
stresses. Equilibrium for each layer is satisfied by equating the sum of Eqns. (10) and (11) to 
zero. 

2. Reduction to integral equation 

The problem can be reduced to an integral equation by relatively simple means through the 
use of the exponential and finite Fourier transforms (see, e.g. Sneddon [1]). Convenient 
representations for the potential functions are the following: 

4)1(x, y ) =  [Al(~)elr162162189 + ~ B~e-"(a+X)cos(ny) (12) 
- - 0 0  / '1=3[ 

~b2(x, y) = [A2(~)elr162 ] e-iCXd~+�89 x + D,e-"(a-X)cos(ny). (13) 
- - o 0  t / = l  

From boundary conditions (1) and (4) the following relations are developed: 
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41 (~)e- 21r = C, (~) 

Az(~) = C2(~)e -21r �9 

Using Eqns. (9), (14), and (15) and the Fourier inversion theorem 

2=l{IAl({)(1-e-21 ~1~) = ( r  a(s)egSds 
,J-- c 

2~1~ l C2 ({) (e-giel=- 1) = a(s)eir 
- c  

(14) 

(15) 

(16) 

(17) 

where it is clear that Eqns. (3) and (6) are also automatically satisfied. Furthermore, from (7): 

A 1 ( ~ ) = - C 2 ( ~ ) ,  C1(~) = - A 2 ( ~ ) .  (18) 

By application of finite Fourier transforms to boundary conditions (2) and (5), into which 
have been substituted Eqns. (12) and (13), and by summation of the resulting infinite series, the 
relatively simple representations for the Fourier coefficients given below are obtained: 

nB, = - a(s)e-"("+') ds 
7r, c 

1.1c nDn - - a(s) e-"{a-S) ds (20) 
7r, - - c  

lie Bo = - a(s)ds (21) 
T~ - c  

lie Do - a(s)ds . (22) 
7"C _ r  

Boundary condition, Eqn. (8), with the results given in Eqns. (12) to (22) leads to the following 
singular integral equation: 

(19) 

f~ ea(S){s l~_x- [ � 8 9  - x@s] 

1 F- e x p [ - ( 2 a + s + x ) ]  e x p [ - ( 2 a - s - x ) ]  ]~ds 
l + f i  kl - e x p  [ - ( 2 a + s + x ) ]  - fl 1 - e x p  [ - ( 2 a - s - x ) ]  J ) 

_ 1 1 - f i  _ F - -c<_xKc (23) 
2 1 + f l  

which is to be solved in conjunction with Eqn. (10). It should be noted in Eqn. (23) that provided 
c < a the last two terms in braces are regular for - c < s, x < c. However, if c = a and s, x-* + c, 
then they can become singular. Such problems have been studied by the author and a colleague 
[2, 3, 4] and by Erdogan and Gupta [5]. The former group of problems were formulated so 
that the singularity arose in the kernel of a Fredholm integral equation while in the latter it 
arose from a singular integral equation with properties as above. 

The problem can be solved most easily by the collocation technique of Erdogan and Gupta 
once the nature of the singularity has been deduced. The function a(s) is found to have the 
following form: 

a (s) = (c + s) ~-1 (c -- s) ~-t B (s) (24) 

where 

fl �89 < ~ < 1 (25) cos (rcc 0 = 1 + f i '  

Journal of Engineerin9 Math., Vol. 8 (1974) 99-105 



102 L. M.  Keer  

1 
cos (roT) - 1 + fi '  �89 < 7 < 1 (26) 

and e (s) is a regular function. Equations (25) and (26) which determine c~ and ~ hold when c = a. 
When c < a, then c~ and 7 are �89 Equations (25) and (26) for c = a are obtained in a rather element- 
ary manner by consideration of Eqn. (23) in the vicinity of x = _+ c. For example, Eqn. (25) is 
obtained by considering the behavior of Eqn. (23) for c = a as s, x ~ + c. Assuming the unknown 
function, a (s), to have the form 

a (s) = (c - s) ~-1 A (s). (27) 

Equation (23) can be written in a form involving a singular part and a regular part as 

a(s) 1 fl 1 1 _ { 1 - ~  
- - + - -  - -  ds+ R ( x )  = (28) 

-c s - x  l + f l  2 c - s - x  2 \ l + f l ]  

where Eqn. (28) holds as x ~ + c  and R(x)  is regular. Let u = c - s ,  and as x ~  + c  

I rF-u -' 1 1 
:o § 

(29) 

The singular part of the integral may be extracted by considering the upper limit to be infinitely 
large, whence the integral is evaluated by its Mellin transform [6]. The result is 

[ fl csc(~c0] + R , 1 ( 1 - f l )  (30) = A ( c ) ( c - x )  ~-1 ctn(rce) + ~ (x) = ~ i ~  " 

If the singular term is to vanish, then Eqn. (25) must hold. A similar investigation as x ~  - c 
will produce Eqn. (26). The nature of the singularity could also have been determined by alter- 
nate techniques. For example, the right-angle corner could be investigated by using the method 
of Knien [7] and Williams [8] as an independent check. Such an investigation would reveal the 
same conclusions as those deduced from the integral equation. 

3. Numerical analysis 

The most suitable method to use for the numerical analysis is that exploited by Erdogan and 
Gupta [5], which is a scheme that directly integrates Eqn. (23) by means Of the Gauss-Jacobi  
integration formula. Equation (23) is first normalized by letting s = ct, x = crl, and then the 
quadrature is performed by using the roots of the Jacobi polynomial 

p(~- 1,~- 1)(tk) = 0 ,  k = 1, 2, ..., n.  (31) 

The collocation points, qr, are obtained as the roots of the Jacobi polynomial 

P("~) ~- ~ 0 r = 1, 2, n -  1 (32) n -  l V I r !  = ~ "", " 

When c < a then ~ = 7 =�89 .and the quadrature process is Gauss-Tchebichef [9]. When c--a,  
then ~ and V are given by Eqns. (24) and (25). 

Equations (23) and (10) become the following system of simultaneous algebraic equations: 

- -  cAk Q (tk) 1 +~-fl -- exp [--  (2a + ct k + ctb)] 
k = l  

exp[ - - (2a- -c tk - -Crb)  ] ] } l ( 1 - - f l ]  r = l , 2 ,  n--1 
--fl 1 ~ e e x p ~ - - - - ~ - ~ ) ] J  = 2 \1 + f l ]  .... 

(33) 

CAk Q (tk) = 1 (34) L 
k=l  

where 
B(s) = B(ct) = c2-~-~Q(t) (35) 

Journal of Engineerin9 Math., Vol. 8 (1974) 99-105 



Potential  theory problem for  two strips in contact 

3r  a 1.5 

103 

x 
ela = 0.2 

0.5 

0.9 

0 ~ J 
0 0.5 1.0 

x/c 
Figure 2. Flux distribution for F = 0, 2a/n = 1 (c < a). 
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Figure 3. Flux distribution for F = 0  (c=a).  
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Figure 4. Flux distribution for F=0 ,7  (c--a). 

and Ak are the weights of  the G a u s s - J a c o b i  in tegra t ion formula.  
Numer i ca l  results are given for several values of  strip geomet ry  and  coupl ing  constant .  

Figures  2 and 3 show curves of the flux/unit  length a long the contac t  region when  fl = 1 (identical 
strips); Fig. 2 gives the case when c~ = 7 = �89 (c < a) and  Fig. 3 gives the case when  c~ = 7 = z (c = a). 
F igure  4 is for the par t icu lar  case , /3=0.176471 ( F = 0 . 7 )  and  shows the  an t i symmet ry  of the 
flux distr ibution.  
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TABLE 1 

Intensity factors for c = a 

L. M.  Keer 

2afiz F=0,  c~=0.667, 7=0.067 F=0.3, c~=0.614, 7=0.725 F=0.5, e=0.580, 7=0.720 F=0.7, c~=0.547, ~=0.823 

B(C) B ( -C)  B(C) B( -C)  B(C) B ( -C )  B(C) B ( -C )  

0.1 0.645 0.645 0.669 0.616 0.685 0.594 0.704 0.572 
0.5 0.401 0.401 0.417 0.374 0.421 0.349 0.420 0.317 
1.0 0.366 0.366 0.385 0.331 0.389 0.296 0.385 0.250 
2.0 0.390 0.390 0.413 0.341 0.415 0.291 0.405 0.222 
3.0 0.432 0.432 0.452 0.379 0.449 0.320 0.431 0.236 
5.0 0.507 0.507 0.517 0.452 0.503 0.385 0.471 0.283 
7.0 0.565 0.565 0.567 0.512 0.543 0.439 0.499 0.323 

10.0 0.634 0.634 0.624 0.583 0.590 0.503 0.532 0.372 

TABLE 2 

Intensity factors for c < a, F = 0 

~ c / a  0.05 0.1 0.2 0.3 0.5 0.7 

2a/~ k 

0.5 - -  0.318 0.317 0.316 0.311 0.298 
1.0 0.318 0.318 0.319 0.319 0.320 0.316 
2.0 0.319 0.320 0.323 0.329 0.347 0.366 
3.0 0.319 0.321 0.330 0.343 0.380 0.421 
5.0 0.320 0.326 0.348 0.380 0.454 0.529 

0.9 

I 

0.262 
0.290 
0.363 
0.441 
0.581 

Of possible interest is the intensity of flux near the corners and this is given jn Tables i and 2. 
In the tables the intensity is simply defined as B (c) for x = c and B ( -  c) for x = - c. In the case 
of the lap joint in anti-plane shear one might modify the intensity factor by a constant to 
correspond to the designation used in fracture mechanics. 

4. Discussion 

The present method of analysis would appear suitable for a broader class of potential theory 
problems than treated here. It would, for example, require slight modification of the analysis 
to study strips in contact at right angles or at arbitrary angles. However, problems of plane 
elasticity, which involve the biharmonic equation, pose greater, although not insurmountable, 

difficulty. 
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